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Abstract. The phase structure of zero temperature twisted mass lattice QCD is investigated. We find
strong metastabilities in the plaquette observable in correspondence of which the untwisted quark mass
assumes positive or negative values. We provide interpretations of this phenomenon in terms of chiral
symmetry breaking and the effective potential model of Sharpe and Singleton.

1 Introduction

As a consequence of (soft) chiral symmetry breaking, na-
ture has arranged itself such that three of the pseudo-scalar
mesons are light, with masses around 140 MeV. This light-
ness of the pionmass becomes important alsowhenwe think
of numerical simulations in lattice QCD. Approaching the
“physical point”, at which the pion mass assumes its value
as measured in experiment, the algorithms used in lattice
simulations suffer from a substantial slowing down [1, 2]
which restricts present simulations to rather high and un-
physical values of the quark mass.

In addition to this slowing down of the algorithms for
Wilson fermions, the quark mass does not act as an in-
frared regulator allowing thus for the appearance of very
small unphysical eigenvalues of the lattice Wilson–Dirac
operator. These eigenvalues render the simulations more
difficult and sometimes even impossible.

Staggered fermions solve this problem, but it is not clear
how to use this approach to simulateNf = 2 or odd number
of flavors [3]. Overlap fermions [4] also solve the problem,
but they are computationally very demanding and, unless
new algorithms are invented, they are very difficult to use
for dynamical simulations.

An elegant way out may be the use of so-called twisted
mass fermions [5, 6]. This formulation of lattice QCD
(tmQCD) is obtained when the Wilson term and the phys-
ical quark mass term are taken not parallel in flavor chiral
space, but rotated by a relative twist angle ω. If the Wilson
term is given the usual form, such a chiral rotation leads
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to a twisted mass parameter µ, in addition to the stan-
dard Wilson quark mass m0 (“untwisted” quark mass).
Lattice QCD with a twisted mass was first employed for
O(a)-improved Wilson fermions with the nice feature that
the improvement coefficients and the renormalization con-
stants are the same as for O(a)-improved Wilson fermions
without twisted mass and hence they did not need to be
recalculated [7]. The main advantage of the twisted mass
fermions is that the twisted quark mass provides a nat-
ural infrared cut-off and avoids problems with accidental
small eigenvalues, rendering therefore the simulations safe.
Of course, the slowing down of the algorithms when ap-
proaching small quark masses will remain, although it is
expected to be less severe.

Later on it was realized that a full O(a)-improvement of
correlation functions can be obtained by using the twisted
mass alone without additional improvement terms when,
as a special case, m0 is set to the critical value mcrit and
the above mentioned twist angle is equal to ω = π/2 [8]. In
this way the demanding computation of many improvement
coefficients can be avoided rendering the simulations much
easier both from a conceptual as well as from a practical
point of view.

The Wilson twisted mass formulation has been tested
numerically in the quenched approximation already [9]. The
results are very encouraging. The O(a) corrections appear
indeed to be cancelled and even higher order effects seem
to be small, at least for the quantities and the value of the
quark mass considered in [9].

A word of caution has to be added at this point. Al-
though, as mentioned above, the twisted quark mass can
be decreased towards zero without simulations breaking
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down due to exceptional configurations, there is an impor-
tant interplay between the lattice cut-off, Λ = a−1 with
a the lattice spacing, and the quark mass mq (see (10)
below). In the continuum in the presence of spontaneous
chiral symmetry breaking the chiral symmetry is not real-
ized à la Wigner and, as the quark mass goes to zero, the
chiral phase of the vacuum is driven by the phase of the
quark mass term. The same must be true on the lattice;
thus the scaling limit a → 0 should be taken before letting
mq → 0. As a result, taking the chiral limit is a numerically
delicate matter.

In order to ensure in practice that on the lattice the
chiral phase of the vacuum is determined by the quark mass
term, proportional to mq, and not by the Wilson term, the
lattice parameters should satisfy the order of magnitude
inequality [8]

mqΛ
−1
QCD � aΛQCD. (1)

This same condition emerges from many different corners of
the lattice theory when the physical world is approached. A
very simple argument leading to the bound (1) is obtained
by comparing the magnitude of the critical Wilson term
to that of the quark mass term and requiring the first to
be negligibly small compared to the second one, in order
to be sure that lattice physics matches the requirements
of the continuum theory. From the order of magnitude
inequality a(ΛQCD)5 � mq(ΛQCD)3, one immediately gets
the condition (1). It is important to observe, however, that
the less restrictive condition

mqΛ
−1
QCD � (aΛQCD)2 (2)

may be sufficient if one is dealing with O(a)-improved quan-
tities.

It should be remarked that, since aΛQCD can be (non-
perturbatively) expressed in terms of g2

0 , (1) and (2) are ac-
tually (order of magnitude) conditions for the values of the
dimensionless bare lattice parameters amq and g2

0 . Contact
with dimensionful quantities can be made by comparing
simulation data with physical inputs.

What is in practice important is to know for which
range of the bare lattice parameters one can avoid troubles
from chiral breaking cut-off effects, even if parametrically of
order a2 or higher. This issue has to be settled by numerical
investigations aimed at establishing both the structure of
the phase diagram of the lattice model in study and the size
of residual scaling violations on the physical observables.

In this perspective, twisted mass fermions offer a unique
opportunity to explore the phase diagram of Wilson fermi-
ons. By fixing the twisted mass parameter µ, one may vary
(m0 −mcrit) from positive to negative values. In this way,
the phase diagram of zero temperature lattice QCD can
be explored. It should be emphasized that, on large lat-
tices, such an investigation would be very difficult without
having µ �= 0, since else the algorithms would slow down
dramatically approaching the critical quark mass.

In this work we have performed simulations to explore
the phase diagram of zero temperature QCD. As it will be
shown in the following, we find strong metastabilities in
the plaquette expectation value. We determined in both

metastable branches a number of quantities such as the
(untwisted) PCAC quark mass and pseudo-scalar meson
masses. The results presented in this paper are obtained
at only one value of β = 5.2, with β related to the bare
gauge coupling g0 by β = 6/g2

0 . Since the value of β = 5.2
corresponds to a rather coarse value of the lattice spac-
ing (a ≈ 0.16 fm) our work can only be considered as
a starting point for a more detailed investigation of the
phase diagram of lattice QCD. In particular, the β de-
pendence of the strength of the observed metastabilities
has to be determined. We believe that a qualitative and
even quantitative understanding of the phase diagram is
a necessary prerequisite for phenomenologically relevant
numerical simulations.

This paper is organized as follows. In Sect. 2 we intro-
duce Wilson twisted mass fermions and give our notation.
This is followed by a short discussion of the algorithms
used. In Sect. 3 we provide our evidence for metastabili-
ties by hysteresis effects and long-living metastable states.
There, we also show results for a selected set of physical
quantities. In Sect. 4, we give a possible interpretation of
these results in terms of chiral symmetry breaking and the
Sharpen–Singleton effective potential model. We conclude
finally in Sect. 5. In the appendix some details of the applied
update algorithms are explained.

2 Lattice action and basic variables

2.1 Lattice action

Let us start by writing the Wilson tmQCD action as

S[U, χ, χ̄] = χ̄ (D[U ] +m0 + µiγ5τ3)χ. (3)

In (3) m0 is the quark mass parameter and µ is the twisted
quark mass parameter. The operator D[U ] is given by

χ̄D[U ]χ = a4
∑

x

{
4r
a
χ̄(x)χ(x) (4)

− 1
2a
χ̄(x)

4∑
µ=1

(
U(x, µ)(r + γµ)χ(x+ aµ̂)

+ U†(x− aµ̂, µ)(r − γµ)χ(x− aµ̂)
)}

,

with r the Wilson parameter which will be set to r = 1 in
our simulations.

The action as it stands in (3) can, of course, be studied
in the full parameter space (m0, µ). A special case arises,
however, when m0 is tuned towards a critical bare quark
massmcrit. In such, and only in such a situation all physical
quantities are, or can easily be, O(a)-improved. It is hence
natural to rewrite

m0 = mcrit + m̃, (5)

with m̃ an offset quark mass. The values of mcrit need
only to be known with O(a) accuracy [8] and can be, for
instance, taken from the pure Wilson theory at µ = 0.
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For standard Wilson fermions usually the hopping pa-
rameter representation is taken in the numerical simula-
tions. This representation is easily obtained from (3) by a
rescaling of the fields

χ →
√

2κ
a3/2 χ, χ̄ →

√
2κ

a3/2 χ̄, κ =
1

2am0 + 8r
. (6)

We then obtain the form of the action that is actually used
in our simulations

S[χ, χ̄, U ] =
∑

x

{
χ̄(x) (1 + 2iaµκγ5τ3)χ(x) (7)

−κχ̄(x)
4∑

µ=1

(
U(x, µ)(r + γµ)χ(x+ aµ̂)

+U†(x− aµ̂, µ)(r − γµ)χ(x− aµ̂)
)}

.

Although not needed for the discussion of the numerical
data presented below, we give for completeness here the
action in the so-called physical basis. This action is obtained
by introducing new fields ψ(x) and ψ̄(x) which are related
to the fields in (3) by a chiral transformation

ψ(x) ≡ ei ω
2 γ5τ3χ(x) =

(
cos

ω

2
+ iγ5τ3 sin

ω

2

)
χ(x) ,

ψ̄(x) ≡ χ̄(x)ei ω
2 γ5τ3 = χ̄(x)

(
cos

ω

2
+ iγ5τ3 sin

ω

2

)
.

(8)

The action then reads

S[ψ, ψ̄, U ] = a4
∑

x

{
mqψ̄(x)ψ(x)

− 1
2a
ψ̄(x)e−iωγ5τ3

[
4∑

µ=1

(
rU(x, µ)ψ(x+ aµ̂)

+rU†(x− aµ̂, µ)ψ(x− aµ̂)
)

−(2amcrit + 8r)ψ(x)

]

− 1
2a
ψ̄(x)

4∑
µ=1

(
U(x, µ)γµψ(x+ aµ̂)

−U†(x− aµ̂, µ)γµψ(x− aµ̂)
)}

, (9)

where we have identified

mq cosω = m0 −mcrit = m̃, mq sinω = µ. (10)

2.2 Simulation algorithms

In our numerical simulations we used two different opti-
mized updating algorithms for producing samples of gauge

configurations: the hybrid Monte Carlo (HMC) algorithm
with up to three pseudo-fermion fields as suggested in [10,
11] and the two-step multi-boson (TSMB) algorithm [12].

In the standard HMC algorithm we used even–odd pre-
conditioning, which in presence of a twisted mass is only a
slight modification of the standard preconditioning tech-
nique [13]. We give the relevant equations in Appendix A.1
of this paper. As a subsequent improvement of the algo-
rithm, we implemented the idea of [10] and used shifted
fermion matrices to “precondition” the original fermion
matrix. These shifted matrices are treated by introducing
additional pseudo-fermion fields. In the shifted fermion
matrix we simply used larger values of the twisted mass
parameter than the value of µ that is to be simulated. Us-
ing two pseudo-fermion fields we experienced a substantial
improvement of the HMC algorithm by at least a factor of
two. The addition of a third pseudo-fermion field gave only
another 10–20% improvement. Again we list the relevant
equations, how the shifted matrices are implemented, in
Appendix A.1. As a further algorithmic trick we used the
Sexton–Weingarten leap-frog integrator as proposed in [14].

Our alternative algorithm, the TSMB algorithm [12], is
based on the multi-boson representation of the fermion de-
terminant [15]. Optimized polynomial approximations are
used, both in the first update step and in the second global
accept-reject correction step, for reproducing the dynami-
cal effect of fermions on the gauge field. We apply high order
least-square optimization and obtain the necessary poly-
nomials using high precision arithmetics [16]. Concerning
the optimization of TSMB for QCD see, for instance, [17].

A useful improvement of the TSMB update algorithms
can again be achieved by even–odd preconditioning. This
can be implemented in TSMB for twisted mass quarks
along the lines of [18]. For the even–odd preconditioning
of the TSMB update the flavor indices of the quark fields
have to be kept. This means that the multi-boson fields
have 24 components per lattice site (2 for flavor, 3 for
color and 4 for Dirac spinor indices). Correspondingly, the
polynomials are approximating the function x− 1

2 as in the
case of a single Dirac flavor with untwisted quark mass. We
give some more details of our even–odd implementation of
the TSMB algorithm in Appendix A.2.

In the region of light quarks an important part of the
numerical effort has to be spent on equilibrating the gauge
configuration in a new simulation point. This is particu-
larly relevant in studies of the phase structure where many
different points in the parameter space have to be investi-
gated. In case of TSMB the equilibration time is substan-
tially longer than the autocorrelation of relevant physical
quantities in equilibrium: on our lattices equilibration can
take ten or more times the autocorrelation time of the
plaquette observable. The autocorrelation times in equi-
librium themselves are similar but most of the time by
factors of 2–3 shorter with our twisted quark masses than
with untwisted quark masses of similar magnitude. For an
approximate formula of the computational cost see [19].

The use of two different optimized update algorithms
was very helpful in checking our results. We did not try to
obtain a precise performance comparison. Qualitatively, we
did not see a noticeable difference in the speed once equi-
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Fig. 1. Thermal cycles in κ on 83 × 16 lattices at β = 5.2.
The plaquette expectation value is shown for: aµ = 0.1 (A);
aµ = 0.01 (B); aµ = 0 (C). The triangles (�) refer to increasing
κ-values, the diamonds (�) to decreasing ones

librium was reached, but the HMC algorithm with multiple
pseudo-fermion fields (MPHMC) turned out to be faster in
the equilibration process. In particular, crossing the tran-
sition region below and above the metastability region is
faster with MPHMC. Nevertheless, the extension in κ of
the metastability region is the same with both algorithms.

The data used for preparing the figures in this publi-
cation were obtained with MPHMC, except for the upper
four panels in Fig. 2, which were obtained with TSMB. The
thermal cycles in Fig. 1 were only run with MPHMC. In
the other figures the results of the TSMB runs, whenever
performed, were always consistent within errors with the
shown MPHMC results.

3 Numerical results

In this section we give our numerical evidence for the phe-
nomenon of metastability mentioned in the introduction.
As a first step and for an orientation we have investigated
thermal cycles in the hopping parameter κ. We then discuss
metastable states in the plaquette expectation value. Fi-
nally we determine quantities such as the pion mass and the
untwisted PCAC quark mass in the metastable branches

in order to obtain a picture of the physical properties in the
different states. In most cases we perform the simulations
at a twisted mass aµ = 0.01, but in a few cases we also put
aµ = 0, which is possible on the lattice sizes we consider.

3.1 Thermal cycles

We started our investigation of the phase diagram of zero
temperature lattice QCD by performing thermal cycles
in κ while keeping fixed β = 5.2 and the value of the
twisted mass parameter aµ. These cycles are performed
such that a starting value of κstart is chosen and then
κ is incremented, without performing further intermediate
thermalization sweeps, until a final value of κfinal is reached.
At this point the procedure is reversed andκ is decremented
until the starting valueκstart is obtained back. At each value
of κ 150 configurations are produced and averaged over.

In Fig. 1 we show three such thermal cycles, performed
at aµ = 0, aµ = 0.01 and aµ = 0.1 from bottom to top. In
the cycles signs of hysteresis effects can be seen for aµ = 0
and aµ = 0.01 while for the largest value of aµ = 0.1
such effects are hardly visible. Hysteresis effects in thermal
cycles may be signs of the existence of a first order phase
transition. However, they should only be taken as first
indications. Nevertheless, they provide most useful hints
for further studies to search for metastable states.

3.2 Metastability

Guided by the results from the thermal cycles, we next
performed simulations at fixed values of aµ and κ, starting
with ordered and disordered configurations, staying again
atβ = 5.2. InFig. 2we show theMonteCarlo time evolution
of the plaquette expectation value, in most cases on a
123 × 24 lattice. For several values of κ we find coexisting
branches with different average values of the plaquette.
The gap (the “latent heat”) appears to be rather large. At
κ = 0.1717we show the history of the plaquette expectation
value also on a larger (163 × 32) lattice. It seems that the
gap in the plaquette expectation value does not depend
much on the lattice size, suggesting that the metastability
we observe here is not a finite volume effect. In most cases
the twisted mass is aµ = 0.01, except for the picture left
in the bottom line where it is aµ = 0.

The lifetime of a metastable state, i.e. the time before
a tunneling to the stable branch occurs, depends on the
algorithm used. In fact, one may wonder, whether the ap-
pearance of the metastable states seen in Fig. 2 may not
be purely an artefact of our algorithms. We cannot com-
pletely exclude this possibility but we believe it is very un-
likely: we employed two very different kinds of algorithms
in our simulations as explained in Sect. 2.2. We observe the
metastable states with both of them. We also interchanged
configurations between the two algorithms: a configuration
generated with the algorithm A was iterated further with
algorithm B and vice versa. We find that in such situations
the plaquette expectation value remains in the state where
it has been before the interchange of configurations took
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Fig. 2. Metastable states at β = 5.2. The number of sweeps is given in thousands. The lattice size is 123 × 24, except for the
right panel in the bottom line where it is 163 × 32. The twisted mass is aµ = 0.01, except for the left panel in the bottom line
where it is aµ = 0

place. In addition, as we shall see below, the two states
can be characterized by well defined and markedly differ-
ent values of basic quantities. We therefore conclude that
the metastable states are a generic phenomenon of lattice
QCD in our formulation.

3.3 Pion and quark masses

By selecting separately configurations with high and with
low plaquette expectation value, we measured the pion
mass and the untwisted PCAC quark mass to study the
physical properties in the two metastable states.

We obtained the pseudo-scalar (“pion”) mass from suit-
able correlation functions. These are constructed from the
standard composite fields defined in terms of the fields ψ̄
and ψ in (9):

S0(x) = ψ̄(x)ψ(x), Pα(x) = ψ̄(x)γ5
τα
2
ψ(x),

Aα
µ(x) = ψ̄(x)γµγ5

τα
2
ψ(x),

V α
µ (x) = ψ̄(x)γµ

τα
2
ψ(x). (11)

Here τα, α = 1, 2, 3 are the usual Pauli matrices in isospin
space. The corresponding composite fields in terms of the
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Fig. 3.The pion mass squared in lattice units on two lattice sizes
measured separately on configurations in the two metastable
states. These runs were made at β = 5.2 and aµ = 0.01

quark fields χ and χ̄ of (3) are then given by the transfor-
mation in (8). For instance, for α = 1, 2 (“charged pions”)
the pseudo-scalar density has the same form in the χ-basis
as in the ψ-basis. Therefore, the mass of the charged pi-
ons can be extracted from correlators in the χ-basis in the
usual way. The charged axial vector and vector currents
are rotated into each other by the angle ω in such a way
that at ω = π/2 they are interchanged. (For more details
see the literature, e.g. [5, 8].)

Besides the pion mass, we measured the PCAC quark
mass from the axial vector current in the χ-basis:

mPCAC
χ ≡

〈
∂∗

µχ̄γµγ5
τ±
2 χ(x) Ô∓(y)

〉
2

〈
χ̄ τ±

2 γ5χ(x) Ô∓(y)
〉 . (12)

Here Ô∓ is a suitable operator that we have chosen to be the
pseudo-scalar density Ô∓ = χ̄ τ∓

2 γ5χ(x), ∂∗
µ is the lattice

backward derivative defined as usual and τ± = τ1 ± iτ2.
One can show that in the limit a → 0 the quantity mPCAC

χ

is asymptotically proportional, through finite renormaliza-
tion constants, to m̃.

In Fig. 3 we show the pion mass squared in lattice units
as function of (2κ)−1. We observe that the pion mass is
rather large and the most striking effect in the graph is
that it can have two different values at the same κ. If we
consider the quark massmPCAC

χ in Fig. 4, we see that in the
states with a low plaquette expectation value the mass is
positive while for high values of the plaquette expectation it
is negative. These quark masses with opposite sign coexist
for some values of κ. Plotting the pion mass versus mPCAC

χ

one obtains Fig. 5.
Figures 2–4 clearly reveal that for small enough µmeta-

stabilities show up in the quantities we have investigated,
such as mπ, mPCAC

χ and the average plaquette, if m0 is
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Fig. 5. The pion mass squared in lattice units from Fig. 3
plotted against the untwisted PCAC quark mass in Fig. 4

close to its critical value. What “small enough µ” means is
likely to change with β. Simulations at larger values of β
are in progress. As a matter of fact, whenm0 is significantly
larger (smaller) than mcrit we find mPCAC

χ to be positive
(negative) and no signal of metastabilities. The remark
that metastabilities take place for m0 close to its critical
value will be important both in Sect. 4.1 to understand
why they affect also a purely gluonic observable such as
the plaquette and in Sect. 4.3, where it leads to a plausible
explanation of the observed metastability phenomena in
terms of spectral properties of the lattice tmQCD Dirac
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matrix (suppression of the “eigenvalue cloud crossing” phe-
nomenon by the fermionic determinant).

The remarks in Sect. 4.1mayprovide further insight also
on the similar metastability phenomena reported in [20]
for the Nf = 3 untwisted Wilson theory and on the reason
why they “disappear” when changing the gluonic action or
details, e.g. cSW-value, of the fermionic action. A possible
reason is that these changes might shift the range of m0
where metastabilities appear to values where no data are
yet available.

4 Physical interpretation

The observed strong metastabilities discussed in the pre-
vious section clearly suggest that we are working either
directly at a first order phase transition or at least very
close to it such that we see the remnants of a close-by first
order phase transition. With the present data we cannot
really differentiate between these two scenarios and in the
following we will therefore discuss both of them.

4.1 Jump in the plaquette
and chiral symmetry breaking

Generally speaking, a jump in the plaquette as seen in our
data can arise owing to the lack of chiral symmetry for
chirally non-invariant formulations of lattice QCD. The
argument relies on the key observation that, when working
with chirally twisted Wilson fermions, there are two dis-
tinct sources of chirality breaking. The first source is the
combination of the untwisted Wilson and mass terms

χ̄M [U ]χ = a4
∑

x

{
χ̄(x)

(
4r
a

+m0

)
χ(x)

− r

2a
χ̄(x)

4∑
µ=1

(
U(x, µ)χ(x+ aµ̂)

−U†(x− aµ̂, µ)χ(x− aµ̂)
)}

. (13)

The second source of chirality breaking is the twisted mass
term µχ̄iγ5τ3χ. As pointed out in Sect. 2, one may trade the
bare parameters m0 and µ in (3) for the equivalent bare
parameters mq and ω of (9). The latter are best suited
to discuss the connection with continuum QCD physics,
as ω is an unphysical parameter, while mq represents the
bare quark mass. Assuming spontaneous chiral symmetry
breaking in infinite volume, the pion mass squared is ex-
pected to vanish linearly in mq (up to lattice artifacts)
as mq → 0. Moreover in the continuum limit the physical
scalar condensate is expected to show a discontinuity and
changes sign as mq passes through zero:

lim
mq→0+

〈[ψ̄ψ]
R〉 = − lim

mq→0−
〈[ψ̄ψ]

R〉 �= 0 , (14)

where by [ψ̄ψ]R we mean the appropriately subtracted and
renormalized scalar density. We recall that for ω �= 0 this

is a non-trivial linear combination of χ̄χ, χ̄iγ5τ3χ and the
constant field (see below for details).

In order to make contact with the observed metasta-
bility phenomena in the regime of spontaneous chiral sym-
metry breaking, two further remarks are important.
(1) At non-zero lattice spacing the twisted mass term
µχ̄iγ5τ3χ induces the twisted condensate 〈[χ̄iγ5τ3χ]R〉,
while the untwisted mass terms χ̄M [U ]χ of (13) deter-
mine the untwisted condensate 〈[χ̄χ]R〉.
(2) The local plaquette field

φ(x) ≡ 1
12

∑
µ�=ν

1
3

tr
[
Uµ(x) × U†

µ(x+ aν̂)U†
ν (x)

]
(15)

admits on the basis of lattice symmetries an operator ex-
pansion of the form

φ(x) =
[
b0� + b4g a

4F · F ]
+ b3 a

3 [χ̄χ]sub

+b4 a4µ [χ̄iγ5τ3χ]sub + O(a5), (16)

with [. . .]sub denoting a subtracted, multiplicatively re-
normalizable, operator and F the continuum gauge field
strength tensor. The plaquette expectation value
P (r, am0, aµ) can be correspondingly written in the form

P (r, am0, aµ) =
[
b0 + b4g a

4〈F · F 〉(r,am0,aµ)
]

+b3 a3〈[χ̄χ]sub〉(r,am0,aµ) (17)

+b4 a4µ〈[χ̄iγ5τ3χ]sub〉(r,am0,aµ) + O(a5).

The important point about the representation (17) is that
it shows that P is actually sensitive to the value of the
subtracted condensates 〈[χ̄iγ5τ3χ]sub〉 and 〈[χ̄χ]sub〉.

Before continuing it is useful to pause a moment and
discuss the structure of (16) and (17) and the nature of
the various terms appearing in it.
– We first notice that the contributions from the identity
and the F · F operator are put together within a square
parenthesis in (16) and (17) to remind us that there is no
unambiguous way to subtract from the latter its power
divergent mixing with the identity. Ultimately this is due
to the fact that, unlike the chiral condensates, the vacuum
expectation value of F ·F is not an order parameter of any
symmetry.
– For the reason we have just recalled, it is instead per-
fectly possible to unambiguously define, in the massless
limit,multiplicatively renormalizable operators [χ̄χ]sub and
[χ̄iγ5τ3χ]sub, by following the procedure outlined in [21].
More generally, such quark bilinears can be defined as fi-
nite operators even at non-vanishing masses, though not
uniquely. This can be done by setting, for instance,

[χ̄χ]sub = χ̄χ− a−3CS0(r, am̃, aµ), (18)

[χ̄iγ5τ3χ]sub = χ̄iγ5τ3χ− a−2µCP (r, am̃, aµ), (19)

with the dimensionless coefficient functions CS0 and CP

determined at some finite space-time volume V = V0 by
the conditions

〈[χ̄χ]sub〉(r,m0,µ) = 0, V = V0, (20)
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〈[χ̄iγ5τ3χ]sub〉(r,m0,µ) = 0, V = V0. (21)

Both the coefficients CS0 and CP admit a finite polyno-
mial expansion in am̃ and aµ (actually in (aµ)2 for parity
reasons).
(3) In terms of [χ̄χ]sub and [χ̄iγ5τ3χ]sub, the renormalized
scalar density in the physical basis, [ψ̄ψ]R, reads[

ψ̄ψ
]
R (22)

= Z−1
M (ω)ZP [cosω [χ̄χ]sub + sinω [χ̄iγ5τ3χ]sub],

where zm = ZP /ZS0 , ZM = [z2
m cos2 ω + sin2 ω]1/2 and

ZΓ denotes the renormalization constant of χ̄Γχ in the
standard Wilson regularization computed in a mass inde-
pendent renormalization scheme1. Consistently with the
general arguments given above, we remark that only the
leading a−3 divergent subtraction is uniquely fixed by the
symmetries of the theory (WTI’s and spurionic transforma-
tions). Consequently these properties can be used to make
the chiral scalar condensate, ψ̄ψ, multiplicative renormaliz-
able in the massless limit, by defining it, e.g., as the Wilson
average over the expectation values computed with oppo-
site values of the coefficient of the Wilson term [8,22].

After this little digression let us go back and discuss
the implications of (17). If we are on the lattice and take
the action of (3) for values of µ or m̃ much larger than
O(aΛ2

QCD), the condensates 〈[χ̄iγ5τ3χ]sub〉 or 〈[χ̄χ]sub〉 are
expected to show no metastability and thus the same should
be true for the plaquette expectation value. However, if
µ is smaller than O(aΛ2

QCD) the physical scalar conden-
sate signaling spontaneous chiral symmetry breaking is not
simply given by 〈[χ̄iγ5τ3χ]sub〉, but has in general also an
untwisted component, 〈[χ̄χ]sub〉. Both components have
an impact on the value of the plaquette (see (17)). When
m̃ passes from positive to negative values the expectation
value of the untwisted operator [χ̄χ]sub should also change
sign and, at non-vanishingly small values of µ, eventu-
ally become very small for almost critical values of m0. In
this situation, owing to the presence of the chiral symme-
try breaking term (13) in the action, the tmQCD sample
of gauge configurations is expected to include configura-
tions where 〈[χ̄χ]sub〉U is positive and configurations where
〈[χ̄χ]sub〉U is negative, corresponding to whethermPCAC

χ is
positive or negative, respectively. (By 〈. . .〉U we mean the
fermionic Wick contraction on a fixed gauge background
U .) Since the coefficient b3 = b3(r, am0, aµ) does not vanish
at m0 = mcrit

2, the value of the plaquette on the configu-
rations where 〈[χ̄χ]sub〉U is positive should be different –
on the basis of the operator expansion (16) – from that on
the configurations where 〈[χ̄χ]sub〉U is negative. The ob-
served jumps of the plaquette expectation value can hence

1 The relations between renormalized and subtracted oper-
ators in the χ-basis are [χ̄χ]R = ZS0 [χ̄χ]sub and [χ̄iγ5τ3χ]R =
ZP [χ̄iγ5τ3χ]sub.

2 Using the spurionic invariances of the action (3), it is possible
to show that b3 is odd under (r → −r) × (m0 → −m0), or
equivalently, since mc(−r) = −mc(r), under (r → −r)× (m̃ →
−m̃). We expect hence a contribution to b3 odd in r and even
in m̃.

be regarded as a combined effect of spontaneous chiral sym-
metry breaking and the explicit breaking of this symmetry
due to the Wilson term in (13).

4.2 Effective potential model

The scenario of a jump in the scalar condensate for Wilson
fermions on the lattice has actually been given already
some time ago by Sharpe and Singleton [23]. As it has been
shown in that work, the phase structure of lattice QCD for
µ = 0 with Wilson-type quarks can be understood in the
low energy chiral theory of pseudo-Goldstone bosons if the
influence of leading lattice artifacts of O(a) and O(a2) is
taken into account.

There are two alternatives: either there exists an Aoki
phase [22] or there is a first order phase transition between
the phases with positive and negative quark mass and the
Aoki phase does not exist.

The relevant part of the effective potential is written
in [23] as

Vχ = −c1A+ c2A
2. (23)

Here A denotes the flavor singlet component of the SU(2)
matrix valued field Σ in the low energy effective chiral La-
grangian:

Σ = A+ i
3∑

r=1

Brτr. (24)

Because of the relation 1 = A2 +
∑3

r=1BrBr the variable
A is constrained to lie between −1 and +1 inclusive. In the
vicinity of the critical quark mass the constant c2 = O(a2)
and the other parameter c1 is proportional to the bare
quark mass (in our notation c1 ∝ m̃).

In order to find the ground state (“vacuum”) the ef-
fective potential has to be minimized. Without repeating
the details of the discussion in [23] let us just summarize
the result.

In case of positive c2 there exists an Aoki phase in the
region of bare quark masses defined by −2c2 ≤ c1 ≤ 2c2.
At the boundaries c1 = ±2c2 all three pion masses van-
ish. Inside the Aoki phase the charged pions are massless
because they are the Goldstone bosons of spontaneous fla-
vor symmetry breaking but the neutral pion is massive.
Outside the Aoki phase (|c1| > 2c2) the flavor symmetry
is preserved by the ground state and the three degenerate
pions are massive (see Fig. 6).

The other alternative is that c2 is negative. In this
case the flavor symmetry is preserved everywhere but there
exists aminimal pionmass because the pionmass is given by

m2
π = f−2

π (|c1| + 2|c2|) . (25)

At c1 = 0 the vacuum expectation value jumps from
Σ = A = +1 to Σ = A = −1. Since the jump of this
“order parameter” happens at non-zero pion mass (i.e. fi-
nite correlation length) the thermodynamical description
of the behavior near c1 = 0 corresponds to a first order
phase transition.

An interesting intermediate situation is defined by c2 =
0. In this case the vacuum expectation value jumps between
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quark mass < 0
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µ

Fig. 6. The alternatives of the phase structure in the (m0, µ)
plane: Upper part: Aoki phase at µ = 0 if c2 > 0, middle part:
first order phase transition point if c2 = 0, lower part: first
order phase transition line if c2 < 0. In the latter case the two
phases are connected with each other as it is shown by the
curve with arrows at both ends

Σ = A = +1 and Σ = A = −1 at a single first order phase
transition point. This limiting case is the ideal situation,
when the phase structure in the Sharpe–Singleton model
is identical to the expected one in the continuum. It can
be characterized either by saying that the Aoki phase has
zero extension or that the minimal pion mass is zero (see
Fig. 6). Of course, this behavior is valid only up to O(a3)
effects, neglecting higher orders in the chiral expansion.

4.3 Scenarios

Our numerical results reveal that we clearly observe me-
tastabilities in various quantities. Thus our conclusion is
that at least for vanishing twisted mass parameter, i.e. for
the standard Wilson lattice theory, there is a first order
phase transition. For non-vanishing values of µ we can have
two scenarios.

The first is that the first order phase transition persists
forµ �= 0 but sufficiently small in absolute value. For largeµ
the theory approaches the quenched limit with a constant
quark determinant and therefore it is plausible that no
phase transition is expected. This scenario suggests that
the first order phase transition line in the (m0, µ) plane has
an end point: the two phases with positive and negative
quark masses are analytically connected (see Fig. 6). The
situation is in this sense analogous to the phase structure
of the SU(2) fundamental Higgs model (see Chap. 6 of [24]
and references therein).

The second scenario is that for any non-vanishing value
of µ the first order phase transition disappears. In this sce-
nario, when varying m0, one passes at some small distance

from the first order phase transition at µ = 0 and just feels
this close-by phase transition.

We can at present not differentiate between these two
scenarios. From the numerical side we would need to know
better the µ and β dependence of the metastability phe-
nomena. From the analytical side an analysis à la Sharpe
and Singleton including the twisted mass parameter µ is
helpful.3

The first order phase transition between the phases with
positive and negative quarkmasses observed in the previous
section is consistent with the no-Aoki-phase alternative
(c2 < 0) of Sharpe and Singleton.

Our exclusion of the Aoki phase is in agreement with the
results of a recent paper [25] which suggests that in case of
the unimproved Wilson action the Aoki phase is restricted
to the region of strong gauge couplings (β ≤ 4.6). Note that
in an early paper on QCD thermodynamics with Wilson
quarks [26] a first order “bulk” phase transition has also
been observed at β = 4.8 which is consistent both with [25]
and with our observations. For further numerical work on
the Aoki phase, see [27].

The rather strong metastability of the two phases with
positive and negative quark mass can be understood on
the basis of the properties of the eigenvalue spectrum of
the (non-hermitean) Wilson-fermion matrix in the twisted
mass basis corresponding to (3). For zero twisted mass
(µ = 0) at small positive quark masses there is a “cloud”
of eigenvalues close to the origin near the real axis. (For
a numerical study see Sect. 4 of [17].) In order to reach
negative quark masses this “cloud” has to cross near the
origin to the other side with negative real parts. This eigen-
value cloud crossing is strongly suppressed by the zero of
the determinant. This, we believe, is the reason at the mi-
croscopical level for the observed strong metastability. For
non-zero twisted mass there is a strip of width 2|µ| around
the real axis where there are no eigenvalues. If this strip is
wide enough the eigenvalues are sufficiently far away from
the origin and the first order phase transition disappears.

As it was already emphasized in [23], the sign of the
coefficient c2 in the low energy pion effective potential is not
universal, it depends on the way the action is discretized.
Therefore a clever choice of the lattice action may weaken
the first order phase transition and, for instance, decrease
the minimal pion mass at it. Previous results of the JLQCD
Collaboration [20] support the conjecture that changing the
gauge action alone has an important effect. If, indeed, one
could find some parameter in the lattice gauge action which
at some value would change the sign of c2 an appealing
possibility would be to tune the lattice action to this value.
The features of a discretization with c2 = 0 seem to be quite
favorable from the point of view of light quark simulations
when, up to O(a2), there would be just a single point
in the (m0, µ) plane with vanishing pion mass – an ideal
situation corresponding to the expected phase structure in
the continuum.

3 We thank Gernot Münster for discussions on this and for
communicating us his results before publication.
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5 Conclusion

In this paper we have explored Wilson twisted mass fermi-
ons restricting ourselves to simulations at only one value
of β = 5.2. By fixing the twisted mass parameter µ and
changing the untwisted Wilson quark mass m0, or equiv-
alently the hopping parameter κ, we encountered strong
metastabilities in the plaquette expectation value, visible
both in thermal cycles as well as in long-living metastable
states. At the same time, the pion mass does not vanish
but has a minimum at a rather large value. The PCAC
quark mass mPCAC

χ in the different metastable branches
is positive for the branch with low plaquette expectation
value and it is negative for the branch with high plaquette
expectation value.

The detection of these metastabilities became possible
by employing a twisted mass term. Only a non-vanishing
value of µ allowed us to cross the critical quark mass. We
showed that for lattice theories that break chiral symmetry
explicitly the jump of the scalar condensate, when changing
the sign of the quark mass, induces a jump of the plaque-
tte expectation value with associated signs of metastability.
Forµ = 0 these metastabilities find a natural interpretation
in the effective potential model of Sharpe and Singleton,
arising from spontaneous symmetry breaking and using a
low energy effective Lagrangian which also describes lattice
artifacts. The agreement with the Sharpe–Singleton model
is remarkable because in the continuum limit in this model
the phase structure of lattice QCD with Wilson quarks
approaches fast – at a rate O(a2) – the expected phase
structure of QCD near zero quark mass. This is an impor-
tant property which has to be required from any lattice
regularization of QCD.

It should be clear that our work can only represent a
first step in a detailed understanding of the QCD phase
diagram at zero temperature near vanishing quark masses.
Clearly, substantially more work has to be done to resolve
this phase structure and its behavior in the continuum
limit. For instance, at present for µ �= 0 we are unable to
differentiate between a scenario where the first order phase
transition persists and another one where at µ �= 0 only a
remnant of the phase transition at µ = 0 is seen. In this
respect an analysis like in [23] for µ �= 0 is very helpful [28].

Among the many open questions there are: How fast
does the gap vanish when the continuum limit at higher
values ofβ is approached?Howare the signs ofmetastability
related to the ones observed using the Wilson plaquette
action and clover-improvedWilson fermions?Howprecisely
do the eigenvalues re-arrange when the critical quark mass
is crossed? Do different gauge actions change the couplings
of the effective potential and may hence lead to avoid the
phenomena of metastability and reproduce the ideal phase
structure at vanishing quark mass already for non-zero
lattice spacing?

The most important question is, of course, how phe-
nomenology can be done given the metastability pheno-
menon seen in our present results, i.e.: What is the lowest
value of the quark mass that can be reached before one en-
ters the regime of metastabilities and how does this change
with decreasing value of the lattice spacing?
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A Appendix

A.1 Even–odd preconditioning for the HMC algorithm

Let us start with the Dirac operator in the hopping pa-
rameter representation in the twisted basis written as

S [χ, χ̄, U ] ≡
∑
xy

χ̄(x)Mxy χ(y), (26)

where the matrix M can be easily read from (7). Using M
one can define the hermitian operator

Q ≡ γ5M =
(
Q+ 0
0 Q−

)
, (27)

where the submatrices Q± can be factorized as follows:

Q± = γ5

(
1 ± iµ̃γ5 Meo

Moe 1 ± iµ̃γ5

)

= γ5

(
M±

ee Meo

Moe M
±
oo

)
(28)

=
(
γ5M

±
ee 0

γ5Moe 1

) (
1 (M±

ee)
−1Meo

0 γ5(M±
oo −Moe(M±

ee)
−1Meo)

)
,

and we have defined µ̃ ≡ 2κµ. Note that (M±
ee)

−1 can be
easily computed to be

(1 ± iµ̃γ5)−1 =
1 ∓ iµ̃γ5

1 + µ̃2 .

Using det(Q) = det(Q+) det(Q−) one can now derive the
following relation (an equation apart from an irrelevant
factor):

det(Q±) ∝ det(Q̂±)

Q̂± := γ5(M±
oo −Moe(M±

ee)
−1Meo) , (29)

where Q̂± is only defined on the odd sites of the lattice.
In the HMC algorithm the determinant is stochastically
estimated using pseudo-fermion fields φo:

det(Q̂+Q̂−) =
∫
D

[
φo, φ

†
o
]
exp(−Sb) ,

Sb := φ†
o(Q̂+Q̂−)−1φo,
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where the fields φo are defined only on the odd sites of the
lattice. In order to compute the force corresponding to the
effective action Sb we need the variation of Sb with respect
to the gauge fields (using δ(A−1) = −A−1δAA−1):

δSb = −
[
φ†

o(Q̂+Q̂−)−1δQ̂+Q̂
−1
+ φo

+ φ†
oQ̂

−1
− δQ̂−(Q̂+Q̂−)−1φo

]
= −

[
X†

oδQ̂+Yo + Y †
o δQ̂−Xo

]
, (30)

with Xo and Yo defined on the odd sites as

Xo = (Q̂+Q̂−)−1φo, Yo = Q̂−1
+ φo = Q̂−Xo , (31)

where Q̂†
± = Q̂∓ has been used. The variation of Q̂± reads

δQ̂± = γ5
(−δMoe(M±

ee)
−1Meo −Moe(M±

ee)
−1δMeo

)
,

(32)
and one finds

δSb = −(X†δQ+Y + Y †δQ−X)

= −(X†δQ+Y + (X†δQ+Y )†), (33)

where X,Y is now defined over the full lattice as

X =
(−(M−

ee)
−1MeoXo

Xo

)
, Y =

(−(M+
ee)

−1MeoYo

Yo

)
.

(34)
In addition, δQ+ = δQ−, M†

eo = γ5Moeγ5 and M†
oe =

γ5Meoγ5 has been used. Since the bosonic part is quadratic
in the φo fields, the φo are generated at the beginning of
each molecular dynamics trajectory with

φo = Q̂+R, (35)

where R is a random spinor field taken from a Gaussian
distribution with norm one.

A.1.1 Hasenbusch trick

The trick first presented in [10] is based on the observation
that writing

det[Q+Q−] = det[W+W−] · det[(Q+Q−)/(W+W−)] (36)

is advantageous for the HMC, if the condition number of
W+W− and of (Q+Q−)/(W+W−) is significantly reduced
compared to the condition number of only (Q+Q−). In
order to achieve this we define

Q± = γ5DW ± iµ̃,
W± = γ5DW ± iµ̃2. (37)

With µ̃2 = µ̃ + ∆µ̃ it follows immediately that the con-
dition number of W+W− is lower than the one of Q+Q−
if for λmin and λmax the lowest and the largest eigenvalue
of Q+Q−, respectively, |λmin| � µ̃2

2 � |λmax| holds: the
condition number of W+W− is |λmax|/µ̃2

2 while the one

of (W+W−)−1(Q+Q−)2 contrariwise is µ̃2
2/|λmin|. We can

take µ̃, which is a lower bound for |λmin|, to write down
the following estimates for the condition numbers k:

kW+W− =
|λmax|
µ̃2

2
, k(Q+Q−)/(W+W−) ≤ µ̃2

2

µ̃2 ,

which leads to an optimal choice for µ̃2
2 =

√|λmax| · µ̃2. As
has been shown in [11] also the force contribution coming
from (Q+Q−)/(W+W−) is reduced. This is true also for
tmQCD and can be seen in the following way: noticing that

Q+Q− = Q2 + µ̃2

and

W+W− = Q2 + µ̃2
2 = Q2 + µ̃2 + µ̃2

2 − µ̃2

= Q+Q− + µ̃2
2 − µ̃2, (38)

it follows that

W+W−(Q+Q−)−1 = 1 + (µ̃2
2 − µ̃2)(Q+Q−)−1. (39)

Since the corresponding effective action reads

SF = φ†(1 + (µ̃2
2 − µ̃2)(Q+Q−)−1)φ (40)

one can see that one gets an explicit factor (µ̃2
2 − µ̃2) � 1

multiplying the force contribution compared to the original
effective action which will reduce the force and therefore
lead to a smoother evolution of the algorithm.

Let us remark that the procedure explained above can
be immediately applied to the even–odd preconditioned
system. Furthermore the trick can be iterated to two or
even more additional operators.

In Fig. 7 the cost C in units of CG iterations and the
acceptance rate PA is plotted versus µ̃2 = 2κµ2 at fixed
HMC stepsize and trajectory length. One can see that
as expected the acceptance rate increases by introducing
an additional operator and reaches a maximum around
µ̃ = 0.2. Of course also the costs increase when compared
to the HMC without additional operators. But the costs are
still much less than what is needed to reach an acceptance
rate of about 90% without the additional operator (see the
dashed line in Fig. 7). One can see that the gain in the
costs is about a factor of two.

A.2 Even–odd preconditioning for the TSMB algorithm

In this appendix even–oddpreconditioning is derived for the
TSMB algorithm. The even–odd subspace decomposition
of the fermion matrix in the twisted basis can be written as

Qχ =
(
µ1 + iγ5τ3µ − 1

2Meo

− 1
2Moe µ1 + iγ5τ3µ

)
, (41)

where indices start by zero = even, the lattice spacing is set
to a = 1 and the abbreviation µ1 ≡ m0 + 4r = (2κ)−1 is
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Fig. 7. Acceptance rate PA and cost C in units of CG itera-
tions versus µ̃2 = 2κµ2 at fixed HMC stepsize and trajectory
length. The dashed line represents the cost required to obtain
about 90% acceptance rate without the additional operator.
The parameters are: 84 lattice, β = 5.2, κ = 0.17, µ = 0.01

introduced. The hermitean fermion matrix Q̃ = γ5τ1Q
χ =

Q̃† is then

Q̃ =
(
γ5τ1µ1 + τ2µ − 1

2 γ5τ1Meo

− 1
2 γ5τ1Moe γ5τ1µ1 + τ2µ

)
. (42)

Using the notation

t5 ≡ (γ5τ1µ1 + τ2µ)−1γ5τ1

= (µ1 − iγ5τ3µ)(µ2
1 + µ2)−1 (43)

one can write Q̃ as the following product:

Q̃ =
(
γ5τ1µ1 + τ2µ 0

0 γ5τ1µ1 + τ2µ

)

×
(

1 0
− 1

2 t5Moe 1

)
(44)

×
(

1 0
0 1 − 1

4 t5Moet5Meo

) (
1 − 1

2 t5Meo

0 1

)
.

This can be used for preconditioned inversion of Q̃
because the inverse of all the factors but the third one is
trivial. Of course, the third factor is expected to have a
smaller condition number than Q̃ itself.

Multi-boson (MB) updating can be set up following [18].
Since the determinant of the above triangular matrices is
equal to 1 we have

det Q̃

= det
(
γ5τ1µ1 + τ2µ 0

0 γ5τ1µ1 + τ2µ− 1
4 γ5τ1Moet5Meo

)

= det
e

(
γ5τ1µ1 + τ2µ

)
× det

o

(
γ5τ1µ1 + τ2µ− 1

4
γ5τ1Moet5Meo

)
, (45)

where dete and deto denote determinants in the even and
odd subspaces, respectively. The first factor does not de-
pend on the gauge field and therefore it can be omitted.

In the second factor we have the hermitean matrix defined
on odd sites

Q̄ = γ5τ1µ1 + τ2µ

− 1
4
γ5τ1Moe(γ5τ1µ1 + τ2µ)−1γ5τ1Meo

= γ5τ1µ1 + τ2µ

− 1
4
γ5τ1Moe(γ5τ1µ1 + τ2µ)(µ2

1 + µ2)−1γ5τ1Meo

= Q̄†. (46)

The hermiticity of Q̄, which can be called hermitean pre-
conditioned fermion matrix, follows from

γ5τ1M
†
oeγ5τ1 = Meo. (47)

In MB updating one can start with the identity

detQ = det Q̃ ∝ det
o
Q̄ =

(
det
o
Q̄2

) 1
2  1

deto P 1
2
(Q̄2)

(48)
where the P 1

2
is a polynomial approximation satisfying

P 1
2
(x)  1

x
1
2

(49)

in an interval x ∈ [ε, λ] covering the spectrum of Q̄2. (Note
that for µ �= 0 detQ and det Q̄ are positive.)

The rest is the same as usual: one writes the polyno-
mial with the help of the square roots of its roots ρj , j =
1, 2, . . . as

P 1
2
(Q̄2) ∝

∏
j

(Q̄− ρ∗
j )(Q̄− ρj). (50)

Then using the identity

det
(
Aee Aeo

Aoe Aoo

)
= det

e
Aee · det

o

(
Aoo −AoeA

−1
ee Aeo

)
(51)

one obtains

det
o

(Q̄− ρj) = det
e

(γ5τ1µ1 + τ2µ)−1 (52)

× det
(
γ5τ1µ1 + τ2µ − 1

2 γ5τ1Meo

− 1
2 γ5τ1Moe γ5τ1µ1 + τ2µ− ρj

)
.

Denoting the projector on the odd subspace byPo we finally
obtain the multi-boson representation

(
det
o
Q̄2

) 1
2

∝
∏
j

1

det
[
(Q̃− Poρ∗

j )(Q̃− Poρj)
] (53)

∝
∫

[dΦ] exp


−

∑
j

Φ†
j(Q̃− Poρ

∗
j )(Q̃− Poρj)Φj


 .
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